ORTHO EFFECTS OF CHLORO- AND NITROBENZOIC ACIDS IN WATER-DIMETHYLSULPHOXIDE MIXTURES AT 25°C

FABRIZIO RODANTE

Istitufo dr Chimica della FacolM di Ingegnerra, Universrtd di Roma, via de1 Castro Laurenziano 7, Rome (Italy)

(Received 30 March 1979)

ABSTRACT

The dissociation of *ortho-chloro-* **and nitro-benzolc acids in water-DMSO mixtures (0 0 + 0 8 DMSO mole fraction) was studied by means of a linear combination of the ordmary polar, proximity polar, and steric effects. Enthalpic and entropic contributions to substituent effects for the ortho-denvatives were also examined. The dissociation of** the ortho-chloro-derivatives appears to be mostly anion-controlled. However, for the ortho-nitro-derivatives, the steric inhibition of solvation on the undissociated molecules **may also be involved in controlling the course of the reaction.**

INTRODUCTION

The enthalpic and entropic contributions to substituent effects on the ionization of *meta-* and *para-chlorobenzoic* and nitrobenzoic acids, in **water-dimethylsulphoxide rmxtures, have previously been examined [1,2]. The following equations have been used to illustrate the substituent effects**

$$
(X - PhCOOH)_s + (PhCOO^{-})_X = (X - PhCOO^{-})_X + (PhCOOH)_X
$$
 (1)

$$
-\delta\Delta G^0 = 2.303RT\rho\sigma\tag{2}
$$

$$
\rho_H \sigma_H = -\frac{\delta \Delta H^0}{2.223 \, \text{F}} \tag{3a}
$$

$$
\delta \Delta S^0
$$
 (31)

$$
\rho_S \sigma_S = \frac{1}{2.303R} \tag{3b}
$$

The variation of ρ , σ , σ_s , σ_H , and ρ_s values as functions of the solvent com**position has been determined. In order to obtzun a more complete picture,** the behaviour of the *ortho-compounds* undergoing the same processes has **been assessed. Fujlta and Nishiota [3] assume that the total ortho-substituent effect can be expressed in terms of the ordinary polar, proximity polar, and steric effects, according to the following equation**

$$
\log\left(\frac{K_{ortho}}{K_H}\right) = \rho_o \sigma_o + fF_o + \delta E_s^0 \tag{4}
$$

The ordmary polar effect would be imaginary from *ortho* substituents with-

out the stenc and proximity polar effects. The primary polar effect is defined equal to that of *para*-substituents, so that $\sigma_{\alpha} \cong \sigma_{\alpha}$ [3]. The proximity polar **effect, F, would account for the inductive and field effects. The steric effect would include the space-filling factor of the ortho-substituent (primary steric effect) with a consequent steric hindrance to salvation for the functional group (E,). The latter effect also includes a steric inhibition of the resonance m the substituent or in the functional group (secondary steric effect). Equation (4) may be written as**

$$
-\frac{\delta \Delta G^{\circ}}{2.303RT} = \rho_o \sigma_o + fF_o + \delta E_s^{\circ}
$$
 (5)

Equation (5), in turn, may be written as [1,2]

$$
-\frac{\delta\Delta G^{\circ}}{2\ 303RT} = \rho_H \sigma_H + \rho_S \sigma_S + fF_o + \delta E^{\circ}_s \tag{6}
$$

 $\rho_H \sigma_H$ and $\rho_S \sigma_S$ being defined by the relations

$$
-\frac{\delta \Delta H^{\circ}}{2303RT} = \rho_H \sigma_H + \delta E_s^{\circ}
$$
 (7a)

$$
\frac{\delta \Delta S^0}{2.303R} = \rho_S \sigma_S + fF_o \tag{7b}
$$

Because the esternal contributions for the nitro- and chlorobenzoic acids are chiefly inductive in character [1,2] and entropy-controlled, it seems reasonable to place an inductive term in eqn. (7b). Smce the secondary stenc effect influences the resonance effect [3] and the latter affects the enthalpic term [41, the steric term is included in eqn. (7a).

ESPERIXENTAL AND PROCEDURE

The calorimetric apparatus, the preparation of the DMSO-water mixtures and the technique for obtaining the thermodynamic values for the chloroand nitro-orfho-derivatives, have been described previously [5,6].

RESULTS AND DISCUSSION

Using expenmental ionization values for benzoic [7], chlorobenzoic 153 and nitrobenzoic [6] acids, the standard free energy for reaction (5) IS obtained as

$S \Delta G^0 = \Delta G_{\text{O-X-PhCOOH}}^0 - \Delta G_{\text{PhCOOH}}^0$

In the same way, the $\delta \Delta H^0$ and $\delta \Delta S^0$ values related to eqns. (7a and b), **respectively, can be obtained.**

The ρ_0 , f_0 and $\delta E_s^{\rm v}$ values for the dissociation of the substituted benzoic **acids in H,O-DMSO mixtures have been reported m the literature [31. For** the $E_{\rm s}^0$ values, the reference substituent is ${\rm H}(E_{\rm s(H)}^0=0)$. For the nitro-com**pound the** *Ez* **value for the minimum dimension has been used [3],** conresponding to the perpendicular position of the $-NO₂$ group with respect to **the reaction site.**

If the above-mentioned values are included in eqn (5) , σ_o values are found on the same scale as σ_m and σ_p .

 σ _o values at the various mole fraction are reported in Table 1. The values of σ_o and ρ_o for nitro- and chloro-benzoic acids are plotted against X_{DMSO} in **Fig. 1.**

The order of the substituent constant is NO_2 - $\sigma_0 > Cl$ - σ_0 throughout the molar fraction range. Indeed, the $-NO₂$ group is a more powerful electron **acceptor than the -Cl group**

In pure water no resonance interaction is to be espected for o-mtrobenzoic acid, because the $-MO₂$ and $-COOH$ groups are not in the plane of the **benzene nng [31. When DMSO is added to water, the mixture displays masi**mum structure [8] at $X_{\text{DMSO}} = 0.15$, so that the extent of the interaction of **nitrobenzoic acid molecules with the organic solvent is reduced For this reason the coplanarity of the nitro- and carbosyl-groups may be only marginally reduced, this, in turn, allowing the resonance to be recovered. Thus.** the resonance overlaps the inductive effect, so that at $X_{\text{DNSO}} = 0.2$ the NO₂**c3, term displays a masimum.**

For the chloro-derivatives the σ values decrease according to the sequence [1] $\sigma_o \geq \sigma_m > \sigma_p$ in the range of mole fraction 0 1 + 0.8 because the inductive effect prevails. The order [2] for the nitro-compounds is $\sigma_o \geq \sigma_m > \sigma_p$, except in the mole fraction range $0.1 \leq X_{\text{DMSO}} \leq 0.3$, where the order is $\sigma_o > \sigma_p > \sigma_m$. In pure water, the order is $\sigma_p > \sigma_m > \sigma_o$, for the nitro-derivatives, while for the chloroderivatives the following order is observed σ_m > $\sigma_o > \sigma_p$.

The steric effect seems to be strongly dependent on the nature of the solvent, so that in pure water δE_s^0 has a significant value, whereas in DMSO-H₂O mixtures it is negligible [3].

The $\delta \Delta H^0$, $\delta \Delta S^0$, δE^0_s and fF_o values are included in eqns. (7a and b) and the $\rho_H \sigma_H$ and $\rho_S \sigma_S$ values are reported in Table 2. The σ_o values lie on the

TABLE 1

^X DMSO	$\sigma_{\bm{o}}$		
	o-Chlorobenzoic acid	o-Nitrobenzoic acid	
0.0	0.292	0.650	
0.1	0.426	0.785	
0.2	0.388	0.869	
0.3	0.344	0.780	
0.4	0.384	0.799	
0.5	0501	0.814	
0.6	0.421	0.807	
07	0.406	0.807	
0.8	0.365	0.781	

 σ _o values calculated using eqn. (5) for the o-chlorobenzoic and o-nitrobenzoic acids in **wateFDMS0 mixtures at 25" C**

Fig 1. Vanation of the ρ and σ values for o -chlorobenzoic and o -nitrobenzoic acids as a function of the mole fraction of DMSO at 25° C. \Box , $o\text{-}NO_2$, \Box , $o\text{-}Cl$.

same scale as σ_m and σ_p and display a limited dependence on the medium **effect (see Fig. 1). Thus, it seems reasonable to assume that the equations** tested in water [4], viz. σ = 0.91 $\sigma_{\scriptscriptstyle S}$ $-$ 0.07 and $\sigma_{\scriptscriptstyle S}$ = $-$ 3.6 $\sigma_{\scriptscriptstyle H}$ + 0.15, which were also used $[1,2]$ for σ_m and σ_p values over the whole mole fraction range, are also valid for the σ_o values. The values of o - $\sigma_{\rm S}$ and o - σ_H have been **calculated and are reported in Table 3.**

TABLE 2 Results of application of separate enthalpy—entropy equations to ionization of *o*-chloro**benzoic and o-nitrobenzorc acids in water--DMSO mixtures at 25OC**

380

TABLE 3

Using the values from Table 2, it is possible to calculate the $o-\rho_s$ values (see Table 4). σ - σ_S and σ - σ_H values are plotted against DMSO mole fraction **in Fig. 2, while the** *o-p,* **values are plotted in Fig. 3.**

For the chlorobenzoic acids the values of *o-ps are* **negative in the mole fraction range 0.0-0.15. This fact can be ascribed to the drastic desolvation, in water-rich solutions, of the o-chlorobenzoic anion [5] with respect to the unsubstituted amon. On the other hand, beyond 0.15 mole fraction, both the anions are desolvated and the** *o-ps* **values become positive. This behaviour is in agreement with the hypothesis that, for the chloro-derivatives, the solvation of the anions rather than that of the undissociated molecules is involved m the control of the course of the reaction.**

However, for the nitro-compounds it seems reasonable to assume that both the undissociated molecules and their anions exhibit a sterlc inhibition of solvation on the carboxyl and carboxylate groups, respectively.

TABLE 4

os values calculated using the entropic equation for o-chlorobenzoic and o-nitrobenzoic aculs m water_DMSO mixtures at 25OC

Fig. 2. Variation of the σ_H and σ_S values of o-chlorobenzoic and o-nitrobenzoic acids as a function of the mole fraction of DMSO at 25° C. \Box , $o\text{-NO}_2$; \Box , $o\text{-Cl}$.

Fig 3. Variation of the ρ_S values for the o-chlorobenzoic and o-nitrobenzoic acids as a function of the mole fraction of DMSO at 25° C. \Box , σ -NO₂; \odot , σ -Cl.

The primary steric effect on the solvated carboxyl group and the resulting congestion accelerate the dissociation of the neutral molecules. The steric mhlbition of solvation for the anions counteracts the steric acceleration effect on the undissociated molecules and tends to reduce the dissociation rate of the compound. This fact explains the very low values of o - ρ_s with respect to those of the chloro-derivatives beyond 0.5 mole fraction.

REFERENCES

- **1 F. Rodante, Thermochim. Acta, 31 (1979) 221.**
- **2 F. Rodante, Thermochim. Acta, 34 (1979) 29.**
- **3 T. FuJita and T. Nishiota, in R.W. Taft (Ed.), Progress in Physrcal Organic Chemistry, Interscience, New York, 1976, pp_ 52, 53, 56, 58, 75, 82.**
- **4 T.M. Krygoswki and R. Fawcett, Can. J. Chem., 53 (1975) 3622.**
- **5 F. Rodante and P. Fiordiponti, Thermochim. Acta, 19 (1977) 13.**
- **6 F. Rodante, Thermochim. Acta, 32 (1979) 293.**
- **7 F. Rodante, F. Rallo and P. Fiordipontr, Thermochim. Acta, 9 (1974) 269.**
- **8 F. Rodante, F. Rallo and P. Frordiponti, Thermochim. Acta, 6 (1973) 369.**